Skip to main content
Log in

Critical review of non-invasive respiratory monitoring in medical care

  • Review
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Respiratory failure can be difficult to predict. It can develop into a life-threatening condition in just a few minutes, or it can build up more slowly. Thus continuous monitoring of respiratory activity should be mandatory in clinical, high-risk situations, and appropriate monitoring equipment could be life-saving. The review considers non-invasive methods and devices claimed to provide information about respiratory rate or depth, or gas exchange. Methods are categorised into those responding to movement, volume and tissue composition detection; air flow; and blood gas concentration. The merits and limitations of the methods and devices are analysed, considering information content and their ability to minimise the rate of false alarms and false non-alarms. It is concluded that the field of non-invasive respiratory monitoring is still in an exploratory phase, with numerous reports on specific device solutions but less work on evaluation and adaptation to clinical requirements. Convincing evidence of the clinical usefulness of respiratory monitors is still lacking. Devices responding only to respiratory rate, and lacking information about actual gas exchange, will have limited clinical value. Furthermore, enhancement in specificity and sensitivity to avoid false alarms and non-alarms will be necessary to meet clinical requirements. Miniature CO2 sensors are identified as one route towards substantial improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allison, R. D., Holmes, E. L., andNyboer, J. (1964): ‘Volumetric dynamics of respiration as measured by electrical impedance plethysmography’,J. Appl. Physiol.,19, pp. 166–173

    Google Scholar 

  • Ashutosh, K., Gilbert, R., Auchincloss, J. H., Erlebacher, J., andPeppi, D. (1974): ‘Impedance pnemograph and magnetometer methods for monitoring tidal volume’,J. Appl. Physiol.,37, pp. 964–966

    Google Scholar 

  • Askanazi, J., Silverberg, P. A., Foster, R. J., Hyman, A. I., Milic-Emili, J., andKinney, J. M. (1980): ‘Effects of respiratory apparatus on breathing pattern’,J. Appl. Physiol.,48, pp. 577–580

    Google Scholar 

  • Barrow, R. E., Vorwald, A. J., andDomeier, E. (1969): ‘Capacitance respirometry’,Arch. Environ. Health,19, pp. 579–585

    Google Scholar 

  • Barschdorff, D., andZhang, W. (1994): ‘Respiratory rhythm detection with photoplethysmographic methods’,IEEE, pp. 912–913

  • Bennett, A. D. (2002): ‘Home apnoea monitoring for infants. A discussion of primary care issues’,Adv. Nurse Pract.,10, pp. 48–53

    MATH  Google Scholar 

  • Bierman, M. I. (1995): ‘Respiratory monitoring’, inDantzkner, D. R., MacIntyre, N. R., andBakow, E. D. (Eds): ‘Comprehensive respiratory care’ (WB Saunders Company, Philadelphia, 1995), pp. 243–264

    Google Scholar 

  • Brown, B. H., Smallwood, R. H., Barber, D. C., Lawford, P. V., andHose, D. R. (1999a): ‘Medical physics and biomedical engineering’ (Institute of Physics Publishing, London, 1999), pp. 556–558

    Google Scholar 

  • Brown, B. H., Smallwood, R. H., Barber, D. C., Lawford, P. V., andHose, D. R. (1999b): ‘Medical physics and biomedical engineering’ (Institute of Physics Publishing, London, 1999), pp. 567–569

    Google Scholar 

  • Burdett-Smith, P. (1997): ‘Always check the respiratory rate’,Br. Med. J.,314, p. 1549

    Google Scholar 

  • Cohen, K. P., Ladd, W. M., Beams, D. M., Sheers, W. S., Radwin, R. G., Tompkins, W. J., andWebster, J. G. (1997): ‘Comparison of impedance and inductance ventilation sensors on adults during breathing, motion, and simulated airway obstruction’,IEEE Trans. Biomed. Eng.,44, pp. 555–566

    Article  Google Scholar 

  • Cop, W. (1988): ‘Methods devices used in ventilatory monitoring’,Encyl. Med. Dev. Instrum.,4, pp. 2870–2877

    Google Scholar 

  • Coté, C. J., Rolf, N., Liu, L. M. P., Goudsouzian, N. G., Ryan, J. F., Zaslavsky, A., Gore, R., Todres, D., Vassallo, S., Polaner, D., andAlifimoff, J. K. (1991): ‘A single-blind study of combined pulse oximetry and capnography in children’,Anesthesiology,74, pp. 980–987

    Google Scholar 

  • Cyna, A. M., Kulkarni, V., Tunstall, M. E., Hutchison, J. M. S., andMallard, J. R. (1991): ‘Aura: A new respiratory monitor and apnoea alarm for spontaneously breathing patients’,Br. J. Anaesth.,67, pp. 341–345

    Google Scholar 

  • Davies, A., Blakeley, A. G. H., andKidd, C. (2001): ‘Human physiology: The respiratory system’ (Churchill Livingstone, Edinburgh, 2001), pp. 647–706

    Google Scholar 

  • Davis, C., Mazzolini, A., andMurphy, D. (1997): ‘A new fibre optic sensor for respiratory monitoring’,Austral. Phys. Eng. Sci. Med.,20, pp. 214–219

    Google Scholar 

  • Dodds, D., Purdy, J., andMoulton, D. (1999): ‘The PEP transducer: a new way of measuring respiratory rate in the nonintubated patient’,J. Accid. Emerg. Med.,16, pp. 26–28

    Google Scholar 

  • Drummond, G. B., Nimmo, A. F., andElton, R. A. (1996): ‘Thoracic impedance used for measuring chest wall movement in postoperative patients’,Br. J. Anaesth.,77, pp. 327–332

    Google Scholar 

  • Eriksson, I., Berggren, L., andHallgren, S. (1986): ‘CO2 production and breathing pattern during invasive and non-invasive respiratory monitoring’,Acta Anaesthesiologica Scandinavica,30, pp. 438–443

    Google Scholar 

  • Folke, M., Granstedt, F., Hök, B. andScheer, H. (2002): ‘Comparative provocation test of respiratory monitoring methods’,J. Clin. Monit.,17, pp. 97–103

    Google Scholar 

  • Franks, C. I., Brown, B. H., andJohnston, D. M. (1976): ‘Contactless respiration monitoring of infants’,Med. Biol. Eng.,May, pp. 306–311

    Google Scholar 

  • Friesen, R. H., andAlswang, M. (1996): ‘End-tidal PCO2 monitoring via nasal cannulae in pediatric patients: Accuracy and sources of error’,J. Clin. Monit.,12, pp. 155–159

    Article  Google Scholar 

  • Galland, B. C., Taylor, B. J., andBolton, D. P. (2002): ‘Prone versus supine sleep position: a review of the physiological studies in SIDS research’,J. Paediatr. Child Health,38, pp. 332–338

    Article  Google Scholar 

  • Gilbert, R., Auchincloss, J. H., Brodsky, J., andBoden, W. (1972): ‘Changes in tidal volume, frequency, and ventilation induced by their measurement’,J. Appl. Physiol.,33, pp. 252–254

    Google Scholar 

  • Gill, N. P., Wright, B., andReilly, C. S. (1992): ‘Relationship between hypoxaemic and cardiac ischaemic events in the perioperative period’,Br. J. Anaesth.,68, pp. 471–473

    Google Scholar 

  • Gordh, T., Rawal, N., Ström, S., andHök, B. (1995): ‘Respiratory monitoring during postoperative analgesia’,J. Clin. Monit.,11, pp. 365–372

    Article  Google Scholar 

  • Gordon, D. H., andThompson, W. L. (1975): ‘A new technique for monitoring spontaneous respiration’,Med. Instrum.,9, pp. 21–22

    Google Scholar 

  • Granstedt, F., Hök, B., Bjurman, U., Ekström, M., andBacklund, Y. (2001): ‘New CO2 sensor with high resolution and fast response’,IEEE-EMBC, Istanbul, Turkey

    Google Scholar 

  • Hamilton, L. H., Beard, J. D., Carmean, R. E., andKory, R. C. (1967): ‘An electrical impedance ventilometer to quantitate tidal volume and ventilation’,Med. Res. Eng.,6, pp. 11–16

    Google Scholar 

  • Hoffman, S., Jedeikin, R., andAtlas, D. (1986): ‘Respiratory monitoring with a new impedance plethysmograph’,Anaesthesia,41, pp. 1139–1142

    Google Scholar 

  • Hök, B., Wiklund, L., andHenneberg, S. (1993): ‘A new respiratory rate monitor: development and initial clinical experience’,Int. J. Clin. Monit. Comput.,10, pp. 101–107

    Article  Google Scholar 

  • Johansson, A., andÖberg, P. Å. (1999a): ‘Estimation of respiratory volumes from the photoplethysmographic signal Part I: experimental results’,Med. Biol. Eng. Comput.,37, pp. 42–47

    Google Scholar 

  • Johansson, A., andÖberg, P. Å. (1999b): ‘Estimation of respiratory volumes from the photoplethysmographic signal Part II: a model study’,Med. Biol. Eng. Comput.,37, pp. 48–53

    Google Scholar 

  • Jones, J. G., Sapsford, D. J., andWheatley, R. G. (1990): ‘Postoperative hypoxemia: mechanisms and time course’,Anaesthesia,45, pp. 566–573

    Google Scholar 

  • Jopling, M. W., Manheimer, P. D., andBebout, D. E. (2000): ‘Effects of severe motion on three pulse oximeters designed for use in motion’,Int. J. Intens. Care, pp. 177–179

  • Kavanagh, B. P., Sandler, A. N., Turner, K. E., Wick, V., andLawson, S. (1992): ‘Use of end-tidal PCO2 and transcutaneous PCO2 as noninvasive measurement of arterial PCO2 in extubated patients recovering from general anesthesia’,J. Clin. Monit.,8, pp. 226–230

    Article  Google Scholar 

  • Kehlet, H., andRosenberg, J. (1995): ‘Late post-operative hypoxaemia and organ dysfunction’,Eur. J. Anaesth.,12, pp. 31–34

    Google Scholar 

  • Larsson, C., Davidsson, L., Lundin, P., Gustafsson, G., andVegfors, M. (1999): ‘Respiratory monitoring during MR imaging’,Acta Radiologica,40, pp. 33–36

    Google Scholar 

  • Larsson, C., andStaun, P. (1999): ‘Evaluation of a new fibre-optic monitor for respiratory rate monitoring’,J. Clin. Monit. Comput.,15, pp. 295–298

    Article  Google Scholar 

  • Lenz, G., Heipertz, W., andEpple, E. (1991): ‘Capnometry for continuous postoperative monitoring of nonintubated, spontaneously breathing patients’,J. Clin. Monit.,7, pp. 245–248

    Article  Google Scholar 

  • Levene, M. I., Tudehope, D. I., andThearle, M. J. (2000): ‘Essentials of neonatal medicine. Respiratory physiology, respiratory failure and mechanical ventilation’ (Blackwell Science Ltd, Oxford, 2000), pp. 115–125

    Google Scholar 

  • Lin, J. C. (1975): ‘Noninvasive microwave measurement of respiration’,Proc. IEEE, p. 1430

  • Lindberg, L.-G., Ugnell, H., andÖberg, P. Å. (1992): ‘Monitoring of respiratory and heart rates using a fibre-optic sensor’,Med. Biol. Eng. Comput.,30, pp. 533–537

    Google Scholar 

  • Linko, K., andPaloheimo, M. (1989): ‘Monitoring of the inspired and end-tidal oxygen, carbon dioxide, and nitrous oxide concentrations: Clinical applications during anesthesia and recovery’,J. Clin. Monit.,5, pp. 149–156

    Article  Google Scholar 

  • Loughnan, T. E., Monagle, J., Copland, J. M., Ranjan, P., andChen, M. F. (2000): ‘A comparison of carbon dioxide monitoring and oxygenation between facemask and divided nasal cannula’,Anaesth. Intens. Care,28, pp. 151–154

    Google Scholar 

  • Nagler, J. (2002): ‘Sudden infant death syndrome’,Curr. Opin. Pediatr.,14, pp. 247–250

    Google Scholar 

  • Nakajima, K., Tamura, T., andMilke, H. (1996): ‘Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering techniques’,Med. Eng. Phys.,18, pp. 365–372

    Article  Google Scholar 

  • Nilsson, L., Johansson, A., andKalman, S. (2000): ‘Monitoring of respiratory rate in postoperative care using a new photoplethysmographic technique’,J. Clin. Monit. Comput.,16, pp. 309–315

    Article  Google Scholar 

  • Perez, W., andTobin, M. J. (1985): ‘Separation of factors responsible for change in breathing pattern induced by instrumentation’,J. Appl. Physiol.,59, pp. 1515–1520

    Google Scholar 

  • Rolfe, P. (1971): ‘A magnetometer respiration for use with premature babies’,Bio-med. Eng.,September, pp. 402–404

    Google Scholar 

  • Rodate, J. R., andShardonofsky, F. R. (2000): ‘Respiratory system mechanics’ inMurray, J. F., Nadel, J. A., Mason, R. J., andBoushey, H. A. (Eds): ‘Textbook of respiratory medicine’ (WB Saunders Company, Philadelphia, 2000), pp. 91–118

    Google Scholar 

  • Rosenberg, J., Pedersen, M. H., Ramsing, T., andKehlet, H. (1992): ‘Circadian variation in unexpected postoperative death’,Br. J. Surg.,79, pp. 1300–1302

    Google Scholar 

  • Roy, J., McNulty, S. E., andTorjman, M. C. (1991): ‘An improved nasal prong apparatus for end-tidal carbon dioxide monitoring in awake, sedated patients’,J. Clin. Monit.,7, pp. 249–252

    Article  Google Scholar 

  • Sage, J., andGough, W. (1998): ‘A simple inexpensive device for monitoring patient respiration’,Med. Biol. Eng. Comput.,36, pp. 231–232

    Google Scholar 

  • Santos, L. J., Varon, J., Pic-Aluas, L., andCombs, A. H. (1994): ‘Practical uses of end-tidal carbon dioxide monitoring in the emergency department’,J. Emerg. Med.,12, pp. 633–644

    Article  Google Scholar 

  • Semmes, B. J., Tobin, M. J., Snyder, J. V., andGrenvik, A. (1985): ‘Subjective and objective measurement of tidal volume in critically ill patients’,Chest,78, pp. 577–579

    Google Scholar 

  • Severinghaus, J. W. (1987): ‘History, status and future of pulse oximetry’,Adv. Exper. Med. Biol.,220, pp. 3–8

    Google Scholar 

  • Siivola, J. (1989): ‘New noninvasive piezoelectric transducer for recording of respiration, heart rate and body movements’,Med. Biol. Eng. Comput.,27, pp. 423–424

    Google Scholar 

  • Sullivan, F. M., andBarlow, S. M. (2001): ‘Review of risk factors for sudden infant death syndrome’,Paediatr. Perinat. Epidemiol.,15, pp. 144–200

    Article  Google Scholar 

  • Tatara, T., andTsuzaki, K. (1997): ‘An apnea monitor using a rapid-response hygometer’,J. Clin. Monit.,13, pp. 5–9

    Google Scholar 

  • Tobin, M. J. (1988): ‘Respiratory monitoring in the intensive care unit’,Am. Rev. Respir. Dis.,138, pp. 1625–1642

    Google Scholar 

  • Vegfors, M., Ugnell, H., Hök, B., Öberg, P. Å., andLennmarken, C. (1993): ‘Experimental evaluation of two new sensors for respiratory rate monitoring’,Physiol. Meas.,14, pp. 171–181

    Article  Google Scholar 

  • Vegfors, M., Lindberg, L.-G., Pettersson, H., andÖberg, P. Å. (1994): ‘Presentation and evaluation of a new optical sensor for respiratory rate monitoring’,Int. J. Clin. Monit. Comput.,11, pp. 151–156

    Article  Google Scholar 

  • Waag-Carlson, B., Neelon, V. J., andHsiao, H. (1999): ‘Evaluation of a non-invasive respiratory monitoring system for sleeping subjects’,Physiol. Meas.,20, pp. 53–63

    Google Scholar 

  • Ward, K. R., andYealy, D. M. (1998): ‘End-tidal carbon dioxide monitoring in emergency medicine, Part 1: basic principles’,Acad. Emerg. Med.,5, pp. 628–636

    Google Scholar 

  • Wiedemann, H. P., andMcCarthy, K. (1989): ‘Noninvasive monitoring of oxygen and carbon dioxide’,Clin. Chest. Med.,10, pp. 239–254

    Google Scholar 

  • Wiklund, L., Hök, B., Ståhl, K., andJordeby-Jönsson, A. (1994): ‘Postanesthesia monitoring revisited: frequency of true and false alarms from different monitoring devices’,J. Clin. Anesth.,6, pp. 182–188

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Folke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Folke, M., Cernerud, L., Ekström, M. et al. Critical review of non-invasive respiratory monitoring in medical care. Med. Biol. Eng. Comput. 41, 377–383 (2003). https://doi.org/10.1007/BF02348078

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02348078

Keywords

Navigation