Conducting a fully mobile and randomised clinical trial for depression: access, engagement and expense

Joaquin A Anguera,1 Joshua T Jordan,1 Diego Castaneda,1 Adam Gazzaley,1 Patricia A Areán2

ABSTRACT
Importance Advances in mobile technology have resulted in federal and industry-level initiatives to facilitate large-scale clinical research using smart devices. Although the benefits of technology to expand data collection are obvious, assumptions about the reach of mobile research methods (access), participant willingness to engage in mobile research protocols (engagement), and the cost of this research (cost) remain untested.

Objective To assess the feasibility of a fully mobile randomised controlled trial using assessments and treatments delivered entirely through mobile devices to depressed individuals.

Design Using a web-based research portal, adult participants with depression who also owned a smart device were screened, consented and randomised to 1 of 3 mental health apps for treatment. Assessments of self-reported mood and cognitive function were conducted at baseline, 4, 8 and 12 weeks. Physical and social activity was monitored daily using passively collected phone use data. All treatment and assessment tools were housed on each participant’s smart phone or tablet.

Interventions A cognitive training application, an application based on problem-solving therapy, and a mobile-sensing application promoting daily activities.

Results Access: We screened 2923 people and enrolled 1098 participants in 5 months. The sample characteristics were comparable to the 2013 US census data. Recruitment via Craigslist.org yielded the largest sample. Engagement: Study engagement was high during the first 2 weeks of treatment, falling to 44% adherence by the 4th week. Cost: The total amount spent on this project, including staff costs and β testing, was $314 264 over 2 years.

Conclusions and relevance These findings suggest that mobile randomised control trials can recruit large numbers of participants in a short period of time and with minimal cost, but study engagement remains challenging.

Trial registration number NCT00540865.

INTRODUCTION
Five hundred million individuals use mental health apps worldwide, with these numbers expected to reach 1.7 billion by 2018.1 The potential for mobile devices to revolutionise healthcare and clinical research has not been lost on either industry2 3 or academia.4–6 Notable examples of initiatives to collect behavioural data using mobile technology are the Patient-Centered Outcomes Research Institute (PCORI)-funded Patient-Centered Clinical Outcomes Research Networks, National Institutes of Health (NIH’s) Precision Medicine Initiative, and Apple’s Research Kit. Indeed, the use of smart technology appears to be a clear avenue to increase research participation.7 8

Mobile technologies may be particularly useful in improving participant access to and reducing expenses of randomised clinical trials (RCTs). Typical RCTs cost millions of dollars and recruit 200–300 participants in 3–5 years.9 Sample demographics are determined by the location of the research institution, limiting the representativeness of many RCT samples. Expense and access problems are exacerbated when trying to study...
populations who are challenging to recruit, such as those with mental illnesses, people living in rural areas or racial/ethnic minority populations.

One solution to overcome access and cost issues has been the use of the internet to conduct randomised control studies. These trials are beneficial from the cost perspective, with estimated cost reductions of more than 50% compared with conventional trials, and from the access perspective, these studies recruit very large samples in short periods of time. However, retention issues are particularly problematic for internet studies, with one recent internet-based trial reporting a drop-out rate of over 90% in a sample of 3000 individuals. Drop-out is likely due in part to the need to access a WiFi connection and dependence on an immobile device (eg, a desktop computer). A potential advantage to research using mobile devices (smart phones and tablets) is that data can be collected anywhere at any time. These devices also facilitate passive data collection such as Global Positioning System (GPS) information from the phone’s accelerometer and media usage to gauge social and physical activity that can supplement self-reports. However, while mobile technology may be able to further expand the reach of clinical research, this approach has yet to be tested.

The purpose of this study is to determine the feasibility of conducting a fully remote RCT using smart devices in depressed adults 18 years old and older. We elected to study depression as our clinical focus given its ubiquitous presence in mental illnesses and disability. It is the leading cause of disability worldwide, and the enrolment of depressed individuals into clinical trials is difficult.

In this paper, we report data on population access (sample representativeness), engagement assessment and cost to complete the study.

METHODS
Ethical approval for the trial was granted by the UCSF Committee for Human Research.

Recruitment
To test our hypotheses about access, we used three different types of recruitment approaches: traditional, social networking and search engine-based methods. Traditional methods were written ads placed in city buses, newspapers and Craigslist postings throughout the USA. Social networking methods included regular postings on sites such as Facebook and Twitter, and contextual-targeting methods to identify and directly push recruitment ads to potential participants, based on their Twitter and other social media comments. Our search engine-based method included using Google Adwords, a historically successful recruitment tool.

Each approach (described further in see online supplementary materials) provided potentially interested participants a link to our custom study website (http://www.brightenstudy.com).

Participant eligibility
Participants had to speak English, be 18 years old or older, own a smartphone (iPhone or Android) with WiFi or 3G/4G capabilities, and own an iPad2 or newer device. iPad ownership was required as our cognitive assessment tool was only available on this device at the time of the study. To characterise recruiting logistics without this restriction, individuals without an iPad but with a smartphone were given the opportunity to participate in phone-only study arms that were not part of the randomised sample. A Patient Health Questionnaire (PHQ-9), score of 5 or greater, or a score of 2 or greater on PHQ item 10 (indicating that they felt disabled in their life because of their mood), was also required for enrolment.

Procedure
Screening
Potential participants were directed to a website (http://www.brightenstudy.com) explaining the study purpose and procedures. Interested participants completed an online brief screening consisting of questions about mobile device ownership.

Consent
We used a combination of a written consent and custom videos posted on YouTube to explain the study. Participants had to pass a quiz that tested their understanding that the study was voluntary, was not a substitute for treatment and that they were to be randomised. Each question had to be answered correctly before moving on to baseline assessment and randomisation. Eligibility was established after consent was obtained.

Randomisation
Participants were randomised to one of three treatment arms where they viewed a brief video explaining how to download and use the assessment and assigned treatment app. Participants were also given a link to view a custom dashboard of their study progress.

Treatment
Participants were asked to use their assigned app for 1 month. The first app was a cognitive intervention video game (Project: EVO™, or EVO) designed to modulate cognitive control abilities, a common neurocognitive deficit underlying depression. The second intervention was an app based on an evidence-based treatment for depression (problem-solving therapy, or PST). The final intervention app, an information control, provided daily health tips (HT) for overcoming depressed mood such as self-care (eg, taking a shower) or physical activity (eg, taking a walk; see online supplementary materials for further descriptions of each).
Assessment
We used two apps to collect baseline and 4, 8 and 12 weeks of outcome data. The first app, developed by Ginger.io™ was used to collect self-reported mood, function and passive analytics such as communication data (text logs including call/text time, call duration, text length and screen usage), and mobility data (activity type and distance travelled using the phone’s accelerometer and GPS). The second app was a mobile cognitive assessment app (Adaptive Cognitive Evaluation (ACE)), to measure cognitive control processes (see online supplementary etable 1). Participants were automatically notified every 8 h for 24 h if they had not completed a survey within 8 h of its original delivery. An assessment was considered missing if it was not completed within this 24 h time frame.

The baseline assessment included the collection of demographics including age, race/ethnicity, marital and employment status, income, education, smart device ownership, use of other health apps, and use of mental health services, including use of medications and psychotherapy. We collected information on mental health status using the PHQ-9 for depression, the generalised anxiety disorder (GAD)-7, for generalised anxiety, a four-item mania and psychosis-disability, we used the Sheehan Disability Scale.27 28

Statistical analyses
To assess participant access, we describe the sample demographics, clinical characteristics and sample comorbidities using the appropriate descriptive statistics. To assess participant engagement, we examined the proportion of study drop-outs and the proportion of enrolled individuals who responded to the primary mood outcome measures at each time point using a mixed-model analysis of variance (with Greenhouse-Geisser corrections when needed). To calculate time to drop-out, we tested a survival analysis model with the distribution of the ‘survival’ times for those assigned each app estimated and non-parametric estimates of the survivor function computed by the Kaplan-Meier method, with curves tested using the log-rank test using Stata V.14.0. We also examined whether there was a significant difference in drop-out rates among the three interventions using Pearson’s χ^2 test. Pairwise log-rank tests were conducted to determine where there were significant differences between the distributions, and a Bonferroni correction was set at $p<0.017$ to correct for multiple comparisons. We also compared these outcomes for the entire sample and by sample type (randomised and non-randomised). To assess issues surrounding cost, we describe a total study cost approach factoring in β testing, staff time and efforts beyond those payments made for recruitment and participant remuneration.

RESULTS
Access
Recruitment rate
National recruitment began in August of 2014, and was conducted in five, 2-week advertising waves (total of 5 months of recruitment). We recruited a total of 2923 participants. Of these recruited individuals, 1098 were enrolled to the randomised (N=626) and non-randomised (N=472) arms of the study (see figure 1). Eighty-nine per cent of the sample came from traditional recruitment approaches, <1% came from social networking, <1% came from search engine-based methods, and 10.3% came from unanticipated means (own search, referrals). We were able to successfully recruit individuals from 8 of the 15 most rural states in the USA29 without any targeted recruitment efforts (see figure 2A).
Figure 1 CONSORT diagram (HT, health tips; PHQ, Patient Health Questionnaire).

Figure 2 Demographic characteristics. (A) Percentage of recruited participants across the USA. (B) Percentage of participants within different age ranges from the recruited sample. (C) Ethnic composition of the recruited individuals, and its comparison to the observed ethnic composition reported in the 2013 US Census.
Participants were primarily young adults (see figure 2B), although age ranged from 18 to 76, with 79% identifying as female. Fifty-eight per cent of our sample was non-Hispanic white, and an ethnicity distribution comparable to the 2013 US Census (see figure 2C). Fifty-seven per cent of our participants obtained a 4-year college degree or higher, with a mean annual income of $30,000–$35,000 (see table 1). Sixty-seven per cent of our participants were employed at the time of enrolment. There was a difference in age between randomised and phone-only assigned participants, with randomised participants slightly older than phone-only participants, t(954.38) = −3.22, p = 0.001. However, there was no difference in gender between these groups (x² = 0.08, p = 0.77). Enrolled individuals who were single/never married reported greater symptoms of depression (t(528.17) = 2.96, p = 0.003).

Clinical characteristics
The sample was moderately depressed at baseline, with a PHQ-9 mean score of 13.9 (SD = 5.1). There was a significant association between age and depression severity, Spearman’s r = −0.11, p < 0.001. There was no significant difference in depression severity among gender (t(365.85) = 0.63, p = 0.53) or ethnic groups, F(6, 1091) = 1.37, p = 0.22. Fifty-one per cent reported comorbid anxiety, 53% reported comorbid alcohol misuse, 16% reported a history of psychosis or mania. In total, 54.5% of our sample was receiving mental health treatment for their depression. This sample mirrored the ethnic disparities in mental health service use found in the general population, with 63% of non-Hispanic white participants in treatment, and only 42% of ethnic minorities were in treatment (x² = 28.6, p < 0.001, OR = 2.29). There were no significant differences in depression severity among individuals randomised to the three primary arms (F[2, 623] = 0.14, p = 0.87; see table 1).

Engagement
Sixty-six per cent of the sample completed the 4-week assessment, 50% completed the 8-week assessment and 41% completed the 12-week assessment (see figure 3A). There was no adherence difference by group (F(2, 241) = 2.50, p = 0.08) and no time by group interaction (F(3.55, 428.14) = 1.93, p = 0.11).

Table 1 Baseline demographics

<table>
<thead>
<tr>
<th>Variable</th>
<th>PST</th>
<th>EVO (iPad)</th>
<th>HT (iPad)</th>
<th>EVO (iPhone)</th>
<th>HT (Android)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>34.91 (12.33)</td>
<td>33.37 (10.87)</td>
<td>33.56 (12.27)</td>
<td>30.33 (11.11)</td>
<td>32.41 (10.26)</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><12 years</td>
<td>39 (18.48)</td>
<td>31 (14.83)</td>
<td>36 (17.48)</td>
<td>52 (21.85)</td>
<td>77 (32.91)</td>
</tr>
<tr>
<td>College</td>
<td>133 (63.03)</td>
<td>129 (61.72)</td>
<td>122 (59.22)</td>
<td>148 (62.18)</td>
<td>125 (53.42)</td>
</tr>
<tr>
<td>Graduate</td>
<td>39 (18.48)</td>
<td>49 (23.44)</td>
<td>49 (23.30)</td>
<td>38 (15.97)</td>
<td>32 (13.68)</td>
</tr>
<tr>
<td>Income*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$20 000 or less</td>
<td>42 (25.00)</td>
<td>31 (15.32)</td>
<td>39 (31.71)</td>
<td>73 (53.28)</td>
<td>79 (58.96)</td>
</tr>
<tr>
<td>$20 000–$40 000</td>
<td>32 (26.67)</td>
<td>21 (23.86)</td>
<td>30 (24.39)</td>
<td>37 (27.01)</td>
<td>34 (25.37)</td>
</tr>
<tr>
<td>$40 000–$60 000</td>
<td>26 (21.67)</td>
<td>17 (19.32)</td>
<td>17 (13.82)</td>
<td>18 (13.14)</td>
<td>14 (10.45)</td>
</tr>
<tr>
<td>$60 000–$80 000</td>
<td>5 (5.00)</td>
<td>9 (10.23)</td>
<td>18 (14.63)</td>
<td>7 (5.11)</td>
<td>4 (2.99)</td>
</tr>
<tr>
<td>$80 000–$100 000</td>
<td>5 (5.00)</td>
<td>3 (3.41)</td>
<td>7 (5.69)</td>
<td>1 (0.73)</td>
<td>1 (0.75)</td>
</tr>
<tr>
<td>$100 000+</td>
<td>8 (6.67)</td>
<td>7 (7.95)</td>
<td>12 (9.76)</td>
<td>1 (0.73)</td>
<td>2 (1.49)</td>
</tr>
<tr>
<td>Number of females</td>
<td>160 (75.83)</td>
<td>161 (77.03)</td>
<td>173 (83.98)</td>
<td>198 (83.19)</td>
<td>172 (73.50)</td>
</tr>
<tr>
<td>Per cent of minority</td>
<td>83 (39.34)</td>
<td>87 (41.63)</td>
<td>82 (39.81)</td>
<td>94 (39.50)</td>
<td>110 (47.01)</td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single</td>
<td>118 (55.92)</td>
<td>112 (53.59)</td>
<td>118 (57.28)</td>
<td>164 (68.91)</td>
<td>150 (64.10)</td>
</tr>
<tr>
<td>Married</td>
<td>62 (29.38)</td>
<td>73 (34.93)</td>
<td>68 (33.01)</td>
<td>53 (22.27)</td>
<td>53 (22.65)</td>
</tr>
<tr>
<td>Divorced/separated/widowed</td>
<td>31 (14.69)</td>
<td>24 (11.48)</td>
<td>20 (9.71)</td>
<td>21 (8.82)</td>
<td>31 (13.25)</td>
</tr>
<tr>
<td>Psychiatric</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHQ-9</td>
<td>13.76 (4.91)</td>
<td>13.51 (5.06)</td>
<td>13.64 (4.90)</td>
<td>13.61 (5.02)</td>
<td>15.01 (5.23)</td>
</tr>
<tr>
<td>GAD</td>
<td>10.36 (4.97)</td>
<td>9.15 (4.92)</td>
<td>10.39 (5.32)</td>
<td>10.54 (5.53)</td>
<td>10.38 (5.46)</td>
</tr>
<tr>
<td>NIAAA</td>
<td>3.20 (2.54)</td>
<td>3.03 (2.24)</td>
<td>3.40 (2.31)</td>
<td>3.34 (2.35)</td>
<td>2.98 (2.43)</td>
</tr>
<tr>
<td>Mania Hx</td>
<td>22 (14.57)</td>
<td>15 (11.90)</td>
<td>20 (14.71)</td>
<td>25 (16.03)</td>
<td>25 (15.15)</td>
</tr>
<tr>
<td>Psychosis Hx</td>
<td>2 (1.32)</td>
<td>1 (0.79)</td>
<td>3 (2.21)</td>
<td>3 (1.92)</td>
<td>3 (1.82)</td>
</tr>
<tr>
<td>Using other health apps</td>
<td>128 (87.67)</td>
<td>105 (84)</td>
<td>116 (86.57)</td>
<td>124 (79.49)</td>
<td>125 (77.64)</td>
</tr>
<tr>
<td>Per cent of rural</td>
<td>5 (3.37)</td>
<td>3 (1.44)</td>
<td>7 (3.40)</td>
<td>9 (3.78)</td>
<td>5 (2.14)</td>
</tr>
<tr>
<td>In treatment</td>
<td>84 (57.5)</td>
<td>64 (52.5)</td>
<td>74 (56.5)</td>
<td>84 (55.3)</td>
<td>81 (50.9)</td>
</tr>
</tbody>
</table>

Mean (SD) for continuous variables; number (percentage) for categorical.

HT, health tips; Hx, medical history; PHQ, Patient Health Questionnaire; PST, problem solving therapy.
We found similar adherence to the cognitive assessment tool, with neither a group (F=0.46, p=0.63) nor interaction effect present (F=0.91, p=0.42). Although lower assessment adherence was observed in the more depressed participants, younger participants, and participants with lower education, the effects sizes were small (see table 2).

Kaplan-Meier survival analysis was conducted to determine whether intervention assignment or any baseline demographic variables predicted drop-out status. The log-rank test revealed a significant difference between the survival distributions between groups ($x^2 = 19.27$, $p<0.001$), with the EVO arm having significantly earlier time to drop-out than the PST arm ($x^2 = 7.45$, $p=0.01$) or HT ($x^2 = 17.51$, $p<0.001$) arms (see figure 3B). We did not find a significant difference in survival distributions for those with high versus low PHQ-9 scores (using a PHQ-9 score of 10 as a cut-point, $x^2 = 2.29$, $p=0.13$). There was no significant difference in survival distributions between non-Hispanic whites and ethnic minorities ($x^2 = 2.13$, $p=0.14$). Participants who received bonus pay remained in the study longer than those who did not receive a bonus ($x^2 = 11.82$, $p<0.001$). Bonus pay was for assessment completion, not intervention app use.

Cost Total study costs included participant payments ($23,320), website/enrolment portal/database development ($46,507), and salaried staff time (3; 2 student volunteers also assisted) over the 9 months the study was active ($58,917), summing to a total of $128,444. The total amount spent on for this project, including staff costs, development and β testing of the UCSF developed apps (ACE and iPST), and licensing fees for

Table 2 Baseline demographics*

<table>
<thead>
<tr>
<th>Assessment adherence</th>
<th>Adherent</th>
<th>Non-adherent</th>
<th>p Value</th>
<th>Effect size†</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHQ-9‡</td>
<td>13.25 (5.0)</td>
<td>14.5 (4.9)</td>
<td>0.001</td>
<td>0.24</td>
</tr>
<tr>
<td>Age†</td>
<td>34.7 (11.4)</td>
<td>30.7 (10.8)</td>
<td><0.001</td>
<td>0.36</td>
</tr>
<tr>
<td>Education§</td>
<td><12 years</td>
<td>61 (17.09)</td>
<td>95 (25.54)</td>
<td><0.01</td>
</tr>
<tr>
<td>College</td>
<td>206 (57.70)</td>
<td>211 (56.72)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graduate</td>
<td>90 (25.21)</td>
<td>66 (17.74)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender¶</td>
<td>80 (22.4)</td>
<td>75 (20.2)</td>
<td>0.46</td>
<td>0.11</td>
</tr>
<tr>
<td>Minority**</td>
<td>130 (36.4)</td>
<td>161 (43.3)</td>
<td>0.06</td>
<td>0.23</td>
</tr>
<tr>
<td>Income††</td>
<td>$20,000 or less</td>
<td>81 (39.32)</td>
<td>91 (47.40)</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>$20,000–$40,000</td>
<td>50 (24.27)</td>
<td>52 (27.08)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$40,000–$60,000</td>
<td>34 (16.50)</td>
<td>30 (15.62)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$60,000–$80,000</td>
<td>21 (10.19)</td>
<td>7 (3.65)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$80,000–$100,000</td>
<td>6 (2.91)</td>
<td>6 (3.12)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$100,000+</td>
<td>14 (6.80)</td>
<td>6 (3.12)</td>
<td></td>
</tr>
</tbody>
</table>

*Means and SDs unless otherwise specified.
†All effect sizes converted to Cohen’s d.
‡Welch t test.
§Pearson χ² test; number and percentage.
¶Pearson χ² test; number and percentage of males.
**Pearson χ² test; number and percentage of ethnic minorities.
††Fisher’s exact test; number and percentage.
PHQ, Patient Health Questionnaire.

Figure 3 Intervention and assessment adherence. (A) Percentage of individuals who responded to their mood assessment during the treatment phase (first 4 weeks) and follow-up periods (weeks 8 and 12). (B) Kaplan-Meier survival estimates per study arm illustrating survival distributions of time to drop-out (last day of recorded activity) over the course of the study (84 days).

the use of the other apps (EVO and Ginger.io) was $314,264 over 2 years.

DISCUSSION

The results from this study have a number of important implications for the future of RCTs in mental health. First, we recruited a large sample of depressed participants in a short period of time and with minimal cost and effort. Currently, the typical RCT takes 4–5 years to complete, and another 1–2 years before the outcomes from these trials are reported publicly. Rapid recruitment has the potential for quickly testing intervention efficacy and effectiveness, and ultimately moving effective treatments into practice while identifying and preventing the proliferation of ineffective, even unsafe, treatments. Second, we were able to recruit a highly representative sample of the US population, without any specific cultural adaptations or targeted advertising. Remote research methods could address decades-long concerns about the generalisability of clinical findings to minority samples not typically represented in clinical research. Finally, the cost of a fully remote RCT could allow for greater distribution of dwindling clinical research and development funds from federal, foundation and industry sponsors. Investment in large-scale clinical trials is a costly endeavour, resulting in the need to focus funds on only a few research areas. Although not all mental health RCTs should be fully remote, particularly those that test hypotheses about biological or neurological processes that can only be measured with immobile devices, the methods presented here, such as automated data collection of neuropsychological processes could result in substantial savings, which in turn could be invested in a diverse research portfolio.

This research method is not without its limitations. Primary among the challenges of fully remote research is the ability to keep participants engaged in the study protocol over time. Although there is an appeal to quickly recruiting and retaining large numbers of participants in an RCT, researchers and developers need to be cautious when interpreting outcomes from samples with a drop-out rate greater than 70%. However, it is important to point out here that the project was completely automated with very little contact between the participant and research team, and our retention rates were higher than in the typical internet-based RCT. Internet-based studies have shown that when there is more direct contact between the research team and participant through technology, without any specific cultural adaptations or targeted advertising. Remote research methods could address decades-long concerns about the generalisability of clinical findings to minority samples not typically represented in clinical research. Finally, the cost of a fully remote RCT could allow for greater distribution of dwindling clinical research and development funds from federal, foundation and industry sponsors. Investment in large-scale clinical trials is a costly endeavour, resulting in the need to focus funds on only a few research areas. Although not all mental health RCTs should be fully remote, particularly those that test hypotheses about biological or neurological processes that can only be measured with immobile devices, the methods presented here, such as automated data collection of neuropsychological processes could result in substantial savings, which in turn could be invested in a diverse research portfolio.

This research method is not without its limitations. Primary among the challenges of fully remote research is the ability to keep participants engaged in the study protocol over time. Although there is an appeal to quickly recruiting and retaining large numbers of participants in an RCT, researchers and developers need to be cautious when interpreting outcomes from samples with a drop-out rate greater than 70%. However, it is important to point out here that the project was completely automated with very little contact between the participant and research team, and our retention rates were higher than in the typical internet-based RCT. Internet-based studies have shown that when there is more direct contact between the research team and participant through technology, without any specific cultural adaptations or targeted advertising. Remote research methods could address decades-long concerns about the generalisability of clinical findings to minority samples not typically represented in clinical research. Finally, the cost of a fully remote RCT could allow for greater distribution of dwindling clinical research and development funds from federal, foundation and industry sponsors. Investment in large-scale clinical trials is a costly endeavour, resulting in the need to focus funds on only a few research areas. Although not all mental health RCTs should be fully remote, particularly those that test hypotheses about biological or neurological processes that can only be measured with immobile devices, the methods presented here, such as automated data collection of neuropsychological processes could result in substantial savings, which in turn could be invested in a diverse research portfolio.

This research method is not without its limitations. Primary among the challenges of fully remote research is the ability to keep participants engaged in the study protocol over time. Although there is an appeal to quickly recruiting and retaining large numbers of participants in an RCT, researchers and developers need to be cautious when interpreting outcomes from samples with a drop-out rate greater than 70%. However, it is important to point out here that the project was completely automated with very little contact between the participant and research team, and our retention rates were higher than in the typical internet-based RCT. Internet-based studies have shown that when there is more direct contact between the research team and participant through technology, without any specific cultural adaptations or targeted advertising. Remote research methods could address decades-long concerns about the generalisability of clinical findings to minority samples not typically represented in clinical research. Finally, the cost of a fully remote RCT could allow for greater distribution of dwindling clinical research and development funds from federal, foundation and industry sponsors. Investment in large-scale clinical trials is a costly endeavour, resulting in the need to focus funds on only a few research areas. Although not all mental health RCTs should be fully remote, particularly those that test hypotheses about biological or neurological processes that can only be measured with immobile devices, the methods presented here, such as automated data collection of neuropsychological processes could result in substantial savings, which in turn could be invested in a diverse research portfolio.

CONCLUSIONS

Mobile technology has an important role in broadening the reach and representativeness of RCTs, while substantially reducing the time to determine intervention effectiveness and reducing study costs. Although study retention remains challenging for technology-based research, innovative methods to increase motivation and study engagement could easily address this important limitation.

Acknowledgements The authors thank A Brandes-Aitken (UCSF), M Brander (UCSF) and A Bodupudi (UCSF) for assistance in data monitoring, M Gross (UCSF) and J Camire (Ekho.me) for their help in participant recruitment, J Steinmetz (Ekho.me) for database architecture, D Ziegler (UCSF) for helping with app deployment, D Albert (UCSF) for assistance in web design, L Slavik (UCSF) for accounting assistance, C Catledge (UCSF) for administrative oversight, A Piper, E Martucci, S Kelloff, J Bower, M Omerick and the entire Akili Interactive team as well as I Elson, L Kaye, S Goobich and the rest of the Ginger.io team for helping with data collection and partnering with us on this project. They also thank all the participants whose time and efforts made this work possible. Support for this research was provided by the National Institute of Mental Health (P.A.A.; R01-MH084466, T32 MH0182607, K24 MH074717). JAA and JTJ had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis.

Competing interests AG is co-founder, chief science advisor and shareholder of Akili Interactive Labs, a company that develops cognitive training software. AG has a patent pending for a game-based cognitive training intervention, ‘Enhancing cognition in the presence of distraction and/or interruption’, on which the cognitive training application (PROJECT: EVO) that was used in this study was based.

Ethics approval UCSF Committee for Human Research.

Provenance and peer review Not commissioned; externally peer reviewed.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

REFERENCES

4. Mohr D. Highlight: A Therapist in One’s Pocket: mHealth to Improve Access to Mental Health Care. Secondary Highlight:

Participant-facing dashboard

We created an anonymous URL for each participant to view their study progress for each study intervention and specific study assessments (ACE and their daily mood survey (PHQ-2, see below). They could click on their assigned link to view a) how their averaged mood changed across the course of the study, if they had completed their daily mood survey (Ginger.io) or when they interacted with their assigned intervention app (e.g. PST) across the entire study period. They could also view which of the games in the ACE application they had successfully completed at each assigned time period. A green highlighted cell indicated that data for said task had been received, whereas a grey highlighted cell indicated that particular data point was absent.

eFigure 1. Example of participant dashboard
Recruitment

Of the different recruitment strategies used, Craigslist provided the greatest response rate, with these posting costing a total of $775 for the study period.

1) Traditional recruitment consisted of outreach to provider networks, print and radio advertisements and fliers placed in strategic locations, such as coffee shops, libraries and bus stops across the city of San Francisco, as well as in online classified pages for volunteers and part-time paid positions (see eFigure 2). Ads specified that UCSF was conducting a study to better understand the effects of mobile apps for one’s wellbeing, and was seeking volunteers. A web-link to the study portal was provided in the ads. Craigslist ads were placed in the largest cities in each state under volunteer opportunity as well as under ‘Jobs etc./part-time jobs’.

2) Social network-based recruitment consisted of social media lead advertising (thanks to our partner ehko.me) to promote our study to users on Twitter who used key words that indicated they may be suffering from symptoms of depression (see eFigure 2b). This approach involves identifying potential participants based on publically available conversations being held across social media networks to produce a real-time sample of individuals who may be interested in participating in this type of study. These potential participants were forwarded one of several similar brief advertisements making them aware of the BRIGHTEN study, with a link to the study website.

3) Search engine-based recruitment consisted of strategically placed ads, similar to ads that appear in usual media recruitment, on search engines and social networking communities (e.g., Google Adwords). The ads that will appear via this method are similar to the traditional ads, with a direct link to the study portal provided on the ads.

eFigure 2. Screen shot of craigslist advertisement posted under ‘Jobs etc./part-time jobs’

2) Social network-based recruitment: example of social media lead advertising on Twitter.
Adaptive Cognitive Evaluation (ACE)
ACE (see eFigure 3) utilizes adaptive psychometric staircase algorithms to ensure that comparisons between individuals reflect actual differences in that cognitive ability and not disparities in the testing parameters. Critically, this approach removes any biases of age-related slowing, instrumentation, or ceiling/floor effects, finding an individualized level of performance that is specific to said user. This approach also facilitates the battery being completed in a time-efficient fashion (the entire battery can be completed in ~30-40 minutes). Each task is designed to change its level of difficulty in a dynamic, trial-by-trial basis until the participant is performing at ~80% rate of accuracy. Calculating these baseline levels lead to the creation of within-task indices (a single number) for each cognitive construct that are presented at the end of each task. ACE was meant to be used before participants used their study-specific app, and then completed again at the week 4, week 8, and week 12 time points in the study to monitor potential changes in cognitive function.

eFigure 3. ACE platform. 3a, Visualization of a participant performing a task on the ACE battery. 3b, Screen image of the home screen. 3c, Image of one of the ACE games, Stroop, during the instruction screen. 3d, Image of feedback following the completion of one of the games (e.g. Stroop).
<table>
<thead>
<tr>
<th>Task name</th>
<th>What it measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRT</td>
<td>Basic Response Time</td>
</tr>
<tr>
<td>Stroop</td>
<td>Attention (with distraction)</td>
</tr>
<tr>
<td>Flanker</td>
<td>Attention (with distraction)</td>
</tr>
<tr>
<td>Delayed Working Memory</td>
<td>Working memory (fidelity)</td>
</tr>
<tr>
<td>Mental Rotation</td>
<td>Working memory (mental imagery)</td>
</tr>
<tr>
<td>Task Switch</td>
<td>Goal Management (e.g. task switching)</td>
</tr>
<tr>
<td>TNT</td>
<td>Goal Management (e.g. multitasking)</td>
</tr>
<tr>
<td>Visual Search</td>
<td>Attention (searching)</td>
</tr>
<tr>
<td>SAAT</td>
<td>Attention (sustained)</td>
</tr>
<tr>
<td>Spatial Span</td>
<td>Working memory (capacity)</td>
</tr>
<tr>
<td>Discrimination</td>
<td>Attention (perception)</td>
</tr>
</tbody>
</table>
Cognitive Training

The cognitive therapy application was Project: EVO (eFigure 4), which is a mobile immersive video game designed to measure and modulate cognitive functioning based upon our work with a related cognitive training intervention, NeuroRacer. Project: EVO is built from the ground up as a consumer-quality action video game on the leading mobile game engine, Unity (www.unity3d.com). Additionally, Project: EVO utilizes a proprietary set of adaptive game algorithms that make the game function at a level of difficulty that is continually personalized to the user to ensure user engagement and that the training is properly titrated for each individual. Participants randomized to this arm of the study were asked to play Project: EVO 6 days a week for 1 month, approximately 30 minutes/day.

![eFigure 4. Project: EVO cognitive training platform. Images from during game play are presented on the left panel, with examples of how the game looks on the iPhone and iPad.](image-url)
Problem Solving Therapy

The PST application, (“iProblem Solve”; eFigure 5) developed by our group is based on the social problem solving protocol developed by Nezu and D’Zurilla 15. Participants are asked to identify an area where they are experiencing problems (e.g. stress, finances, work, etc). Upon selecting an area, more specific problems are provided (for example, depression, anxiety, or anger are listed under the stress domain) and participants are asked to choose a goal to help overcome their problem, or are given the option to write in their own goal. From there, participants are asked to identify three strategies to help them achieve their goal (or to write in their own strategy). They are then asked to evaluate their strategies and rate them on their likelihood of completing, with the app then choosing the most likely strategy for them to use as well as generating a potential list of action plans to reach their goal. Participants can select multiple action plans (or create their own), and are asked to set a date & time to complete the action plan(s). Finally, participants are asked to rate their success in meeting their goal, their mood, and if they want to solve another problem once they have completed (or not completed) the action plan. PST is meant to be played daily1, with the approximate time to solve a problem being 10 minutes.

To try this app, please visit brightenstudy.com/DEMO using your mobile device (iPhone or ANDROID).
Health Tips
Using the Ginger.io platform, we also delivered Health Tips that provided daily suggestions for overcoming depressed mood in the form of pop-up messages at the beginning of each day. In the first session, participants are given general information about depression, and that they must engage in one mood improvement strategy daily to overcome their mood problems. Suggestions include self-care (e.g., sleep behavior, taking a bath), physical activity (e.g., taking a walk), and social activities (e.g., going to the movies, calling a friend). Health Tips are pushed to participants every day for the first month of the study, with participants able to rate how useful these suggestions were to them.

Tool Download Description
For each of the primary arms of the study, 65% of the enrolled individuals actually downloaded their survey app, 43% downloaded the cognitive assessment platform, and 49% downloaded their intervention. For the phone only arms of the study, 44.3% downloaded the EVO game and 65.4% downloaded their survey app, while 70.9% in the Health Tips group downloaded their app. There was a group difference between the primary study arms with respect to the number of participants who actually downloaded their survey application ($x^2 = 7.48, p = .02$), such that individuals in the PST condition were 1.76 times more likely to download their survey application than in the EVO condition ($x^2 = 7.48, p = .01$). There were no group differences in downloading their cognitive assessment application ($x^2 = .53, p = .77$), or their cognitive intervention ($x^2 = .05, p = .83$). There was no difference in depression severity between participants who downloaded their survey application and those who did not ($t(707.40) = .57, p = .57$), or the cognitive assessment application ($t(592.87) = 1.51, p = .13$). The same was true for age, $t(712.47) = .57, p = .57$, ethnic minority status ($x^2 = 2.32, p = .13$), and gender ($x^2 = .00, p = .96$).

Approaches taken to ensure quality of data
The possibility of individuals looking to take advantage of this study to acquire the research payment was a concern we looked to mitigate in a number of ways. The idea of ‘gaming the system’ here is not a foregone conclusion, even if the length of time in the study required to receive full payment (12 weeks for $75) would inherently prevent individuals from trying to do this. First, the enrollment web portal would refresh the entire survey if one were to hit the ‘back’ button on their web browser to change a given answer. Second, our requirement for both a valid email and phone number (and our ability to monitor if any duplicates of each emerged) restricted the ability to create multiple accounts. If there was anything seemingly amiss with respect to the enrollment questions (e.g. multiple attempted enrollments by an individual using the same email address), we would not enroll the individual, thus preventing them from receiving access to any of the study tools. Finally, the link to download subject specific study tools was only valid for a single user, with a password required to even view the download page. This was to prevent individuals not enrolled in the study or even those interested in the study from seeing what the apps were like (and try to ‘game’ their way into specific study arms).

Engagement in other treatments & perceived improvement
Participants were asked if they were using any other apps for mood, functioning or cognitive reasons. If they indicate ‘yes’, we would ask them what type of app they are using, brain games or apps based on psychological principles. Participants were asked to provide their perception of their level of improvement since beginning treatment. Specifically, participants are asked, “since using this app, I feel that I am: (1) much worse (2) worse (3) no different (4) improved (5) much improved.”

2 Note that only the PST and EVO apps were present in this analysis, as the HealthTips app was downloaded automatically with the survey app.
Passive data overview
These data were collected in collaboration with our partner Ginger.io. Ginger.io is a HIPAA-compliant mobile sensing platform that collects both self-reported and passive data through a free smartphone application. Passive data collection is gathered unobtrusively through a background process on the mobile device. The background processes are launched automatically by the application once the user logs in. After the initial logon, the process continues to be automatically launched whenever it is not already running (on phone restart or other events that terminate the process). The data collected through the device includes communication data such as call and sms logs (including call/sms time, call duration, sms length, and screen usage), as well as mobility data such as activity type and distance traveled. Private information such as actual content of voice calls or sms messages or emails is never read, recorded or transmitted.

Data Acquisition Parameters
Participant data from each application was automatically sent to a secure server via custom API calls in JSON format. This data was used to populate a customized researcher dashboard to provide a quick overview of participant compliance and progress. We used a MongoDB database to capture all data; however, specific summary data extracted from the JSON was also written in parallel to a MySql database for additional summary statistics used to populate participant-specific dashboards to provide an ongoing view of their progress in the study.

References