Skip to main content

Advertisement

Log in

Designing a Wearable Navigation System for Image-Guided Cancer Resection Surgery

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

A Commentary to this article was published on 17 October 2014

Abstract

A wearable surgical navigation system is developed for intraoperative imaging of surgical margin in cancer resection surgery. The system consists of an excitation light source, a monochromatic CCD camera, a host computer, and a wearable headset unit in either of the following two modes: head-mounted display (HMD) and Google glass. In the HMD mode, a CMOS camera is installed on a personal cinema system to capture the surgical scene in real-time and transmit the image to the host computer through a USB port. In the Google glass mode, a wireless connection is established between the glass and the host computer for image acquisition and data transport tasks. A software program is written in Python to call OpenCV functions for image calibration, co-registration, fusion, and display with augmented reality. The imaging performance of the surgical navigation system is characterized in a tumor simulating phantom. Image-guided surgical resection is demonstrated in an ex vivo tissue model. Surgical margins identified by the wearable navigation system are co-incident with those acquired by a standard small animal imaging system, indicating the technical feasibility for intraoperative surgical margin detection. The proposed surgical navigation system combines the sensitivity and specificity of a fluorescence imaging system and the mobility of a wearable goggle. It can be potentially used by a surgeon to identify the residual tumor foci and reduce the risk of recurrent diseases without interfering with the regular resection procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Brem, H., O. Stojadinovic, R. F. Diegelmann, H. Entero, B. Lee, et al. Molecular markers in patients with chronic wounds to guide surgical debridement. Mol. Med. 13:30–39, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  2. De Grand, A. M., and J. V. Frangioni. An operational near-infrared fluorescence imaging system prototype for large animal surgery. Technol. Cancer Res. Treat. 2:553–562, 2003.

    Article  PubMed  Google Scholar 

  3. Desmettre, T., J. M. Devoisselle, and S. Mordon. Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Surv. Ophthalmol. 45:15–27, 2000.

    Article  PubMed  CAS  Google Scholar 

  4. Haglund, M. M., D. W. Hochma, A. M Spence, and M. S. Berge. Enhanced optical imaging of rat gliomas and tumor margins. Neurosurgery 35:930–940; discussion 40–41, 1994.

  5. Holland, R., S. H. Veling, M. Mravunac, and J. H. Hendriks. Histologic multifocality of Tis, T1-2 breast carcinomas. Implications for clinical trials of breast-conserving surgery. Cancer 56:979–990, 1985.

    Article  PubMed  CAS  Google Scholar 

  6. Horst, K. C., M. C. Smitt, D. R. Goffinet, and R. W. Carlson. Predictors of local recurrence after breast-conservation therapy. Clin. Breast Cancer 5:425–438, 2005.

    Article  PubMed  Google Scholar 

  7. Kubota, K., J. Kita, M. Shimoda, K. Rokkaku, M. Kato, et al. Intraoperative assessment of reconstructed vessels in living-donor liver transplantation, using a novel fluorescence imaging technique. J. Hepatobiliary Pancreat. Surg. 13:100–104, 2006.

    Article  PubMed  Google Scholar 

  8. Kuroiwa, T., Y. Kajimoto, and T. Ohta. Development of a fluorescein operative microscope for use during malignant glioma surgery: a technical note and preliminary report. Surg. Neurol. 50:41–48; discussion 8–9, 1998.

  9. Kurose, J. F., and K. W. Ross. Computer Networking: A Top-Down Approach. London: Pearson Education, Inc., 2007.

    Google Scholar 

  10. Liu, Y., R. Njuguna, T. Matthews, W. J. Akers, G. P. Sudlow, et al. Near-infrared fluorescence goggle system with complementary metal-oxide-semiconductor imaging sensor and see-through display. J. Biomed. Opt. 18:101303, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Liu, P., S. Zhang, and R. X. Xu. 3D topography of biologic tissue by multiview imaging and structured light illumination. Proc. SPIE 8935-0H:1–8, 2014.

    Google Scholar 

  12. Martin E. W., R. Xu, D. Sun, S. P. Povoski, J. P. Heremans, et al. Fluorescence Detection System. US Patent 09/30763, 2009.

  13. Mednieks, Z., L. Dornin, G. B. Meik, and M. Nakamura. Programming Android. Sebastopol, CA: O’ Reilly Media, 2011.

  14. Mitra, K., J. Melvin, S. Chang, K. Park, A. Yilmaz, et al. Indocyanine-green-loaded microballoons for biliary imaging in cholecystectomy. J. Biomed. Opt. 17:116025, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mothes, H., T. Donicke, R. Friedel, M. Simon, E. Markgraf, and O. Bach. Indocyanine-green fluorescence video angiography used clinically to evaluate tissue perfusion in microsurgery. J. Trauma 57:1018–1024, 2004.

    Article  PubMed  Google Scholar 

  16. Ntziachristos, V., A. G. Yodh, M. D. Schnall, and B. Chance. MRI-guided diffuse optical spectroscopy of malignant and benign breast lesions. Neoplasia 4:347–354, 2002.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Shah, S. A., N. Bachrach, S. J. Spear, D. S. Letbetter, R. A. Stone, et al. Cutaneous wound analysis using hyperspectral imaging. Biotechniques 34:408–413, 2003.

    PubMed  CAS  Google Scholar 

  18. Soltesz E. G., S. Kim, R. G. Laurence, A. M. DeGrand, C. P. Parungo, et al. Intraoperative sentinel lymph node mapping of the lung using near-infrared fluorescent quantum dots. Ann. Thorac. Surg. 79:269–77; discussion 77, 2005.

  19. Tanaka, E., H. S. Choi, H. Fujii, M. G. Bawendi, and J. V. Frangioni. Image-guided oncologic surgery using invisible light: completed pre-clinical development for sentinel lymph node mapping. Ann. Surg. Oncol. 13:1671–1681, 2006.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Waljee, J. F., E. S. Hu, L. A. Newman, and A. K. Alderman. Predictors of re-excision among women undergoing breast-conserving surgery for cancer. Ann. Surg. Oncol. 15:1297–1303, 2008.

    Article  PubMed  Google Scholar 

  21. Weber, W. P., S. Engelberger, C. T. Viehl, R. Zanetti-Dallenbach, S. Kuster, et al. Accuracy of frozen section analysis vs. specimen radiography during breast-conserving surgery for nonpalpable lesions. World J. Surg. 32:2599–2606, 2008.

    Article  PubMed  Google Scholar 

  22. Xu, R. X., J. Ewing, H. El-Dahdah, B. Wang, and S. P. Povoski. Design and benchtop validation of a handheld integrated dynamic breast imaging system for noninvasive characterization of suspicious breast lesions. Technol. Cancer Res. Treat. 7:471–482, 2008.

    Article  PubMed  CAS  Google Scholar 

  23. Xu, R. X., K. Huang, R. Qin, J. Huang, J. S. Xu, et al. Dual-mode imaging of cutaneous tissue oxygenation and vascular thermal reactivity. J. Vis. Exp. 2010. doi:10.3791/2095.

    Google Scholar 

  24. Zhu, Q., S. H. Kurtzma, P. Hegde, S. Tannenbaum, M. Kane, et al. Utilizing optical tomography with ultrasound localization to image heterogeneous hemoglobin distribution in large breast cancers. Neoplasia 7:263–270, 2005.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This project was partially supported by National Cancer Institute (R21CA15977) and the Fundamental Research Funds for the Central Universities. The authors are grateful to Ms. Chuangsheng Yin at University of Science and Technology of China for helping the manuscript preparation and Drs. Edward Martin, Stephen Povoski, Michael Tweedle, and Alper Yilmaz at The Ohio State University for their technical and clinical helps and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald Xu.

Additional information

Associate Editor Tingrui Pan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, P., Ding, H., Wang, J. et al. Designing a Wearable Navigation System for Image-Guided Cancer Resection Surgery. Ann Biomed Eng 42, 2228–2237 (2014). https://doi.org/10.1007/s10439-014-1062-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1062-0

Keywords

Navigation