Skip to main content
Log in

The normal sural nerve in man

I. Ultrastructure and numbers of fibres and cells

  • Original Investigations
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Summary

A combined light and electron microscope study of the normal sural nerve in 7 people aged 15–59 years is reported. Qualitative and quantitative studies of the Schwann cells and fibroblasts, myelinated and unmyelinated fibres are made in isolated fascicles.

Schwann cells predominate over fibroblasts in the ratio of about 9-1. Most Schwann cells, almost 80%, are attached to unmyelinated fibres. Factors influencing the densities of these cells per cross sectional area are discussed.

Some ultrastructural features of the myelinated fibres are described and their numbers per sq.mm and frequency distribution of their sizes are produced. An indirect method is proposed for assessing the mean internodal length for earch of the myelinated fibre size populations in cross sections of fascicles of normal nerves by estimating the proportion of myelinated segments cut through their nucleus.

The ultrastructure of unmyelinated fibres is described and the identification of axons of extreme diameter is discussed. Their densities and size frequency histograms are the first to be reported in man by systematic electron microscope studies. The average ratio of unmyelinated to myelinated fibre density is about 3.7:1 though it varies in the fascicles of the different individuals.

The implications of axonal diameter in the presence of myelin are commented on.

Zusammenfassung

Eine kombinierte licht- und elektronenmikroskopische Untersuchung am normalen N. suralis von 7 Menschen im Alter von 15–59 Jahren wurde vorgenommen. Qualitative und quantitative Beobachtungen an Schwann-Zellen und Fibroblasten, markhaltigen und marklosen Fasern wurden an isolierten Faszikeln durchgeführt.

Schwannzellen überwiegen gegenüber Fibroblasten im Verhältnis von etwa 9:1. Die meisten Schwannzellen (etwa 80%) liegen an marklosen Fasern. Die Faktoren, welche die Dichte dieser Zellen pro Querschnittsareal beeinflußen, werden diskutiert.

Einige ultrastrukturelle Befunde an bemarkten Fasern werden beschrieben und ihre Zahl pro mm2 sowie die Häufigkeitsverteilung ihrer Dicke wird angegeben. Eine indirekte Methode zur Bestimmung der mittleren Internodienlänge für jede der Markfasergrößenpopulationen an Querschnitten von Faszikeln normaler Nerven durch Bestimmung des Verhältnisses der markhaltigen Fasersegmente zu ihrer Kernzahl wird vorgeschlagen.

Die Ultrastruktur der marklosen Nervenfaern wird beschrieben und die Identifizierung dieser Axone mit extremen Durchmessern diskutiert. Ihre Dichte und Größenfrequenzhistogramme sind die ersten, die am Menschen durch systematische elektronenoptische Untersuchungen veröffentlicht werden. Das mittlere Verhältnis von marklosen zu bemarkten Fasern ist etwa 3,7:1 und schwankt in den Faszikeln der Einzelindividuen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Boycott, A. E.: On the number of nodes of Ranvier in different stages of the growth of nerve fibres in the frog. J. Physiol. (Lond.)30, 370–380 (1904).

    Google Scholar 

  • Causey, G., andA. A. Barton: The cellular content of the endoneurium of peripheral nerve. Brain82, 594–598 (1959).

    Google Scholar 

  • Cravioto, H.: The role of Schwann cells in the development of human peripheral nerves. An electron microscopic study. J. Ultrastruct. Res.12, 634–651 (1965).

    Google Scholar 

  • Duncan, D.: A relation between axone diameter and myelination determined by measurement of myelinated spinal root fibres. J. comp. Neurol.60, 437–471 (1934).

    Google Scholar 

  • Dyck, P. J., andE. H. Lambert: Numbers and diameters of nerve fibres and compound action potential of sural nerve: controls and hereditary neuromuscular disorders. Trans. Amer. Neurol. Ass.91, 214–217 (1966).

    Google Scholar 

  • Espir, M. L. E., andD. T. C. Harding: Apparatus for measuring and counting myelinated nerve fibres. J. Neurol. Neurosurg. Psychiat.24, 287–290 (1961).

    Google Scholar 

  • Friede, R. L., andT. Samorajski: Relation between the number of myelin lamellae and axon circumference in fibres of vagus and sciatic nerves of mice. J. comp. Neurol.130, 223–232 (1967).

    Google Scholar 

  • ——: Myelin formation in the sciatic nerve of the rat. J. Neuropath. exp. Neurol.27, 546 to 570 (1968).

    Google Scholar 

  • Gamble, H. J.: Comparative electron-microscopic observations on the connective tissues of a peripheral nerve and a peripheral root in the rat. J. Anat. (Lond.)98, 17–25 (1964).

    Google Scholar 

  • —: Further electron microscope studies of human foetal peripheral nerves. J. Anat. (Lond.)100, 487–502 (1966).

    Google Scholar 

  • — andRosemary, A. Eames: An electron microscope study of the connective tissues of human peripheral nerve. J. Anat. (Lond.)98, 655–663 (1964).

    Google Scholar 

  • Gasser, H. S.: Cold Spr. Harb. Symp. quant. Biol.17, 32–36 (1952).

    Google Scholar 

  • —: Properties of dorsal root unmedullated fibres on the two sides of the ganglion. J. gen. Physiol.38, 709–728 (1955).

    Google Scholar 

  • Hess, A.: The fine structure and morphological organization of non-myelinated nerve fibres. Proc. roy. Soc.144, 496–506 (1956).

    Google Scholar 

  • Hiscoe, Helen B.: Distribution of nodes and incisures in normal and regenerated nerve fibres. Anat. Rec.99, 447–475 (1947).

    Google Scholar 

  • Key, A., andG. Retzius: Studien in der Anatomie des Nervensystems und des Bindegewebes. Stockholm: Samson and Wallin 1876.

    Google Scholar 

  • Landon, D. N., andP. L. Williams: Ultrastructure of the node of Ranvier. Nature (Lond.)199, 575–577 (1963).

    Google Scholar 

  • Lascelles, R. G., andP. K. Thomas: Changes due to age in internodal length in the sural nerve in man. J. Neurol. Neurosurg. Psychiat.29, 40–44 (1966).

    Google Scholar 

  • Lovarack, J. O., S. Sunderland, andL. J. Ray: The branching of nerve fibres in human cutaneous nerves. J. comp. Neurol.94, 293–311 (1951).

    Google Scholar 

  • Nageotte, J.: L'Organisation de la matière dans ses raports avec la vie. Paris: F. Alcan 1922.

    Google Scholar 

  • Ochoa, J., andJ. D. Vial: Behaviour of the peripheral nerve structures in chronic neuropathies with special reference to the Schwann cell. J. Anat. (Lond.)102, 95–111 (1967).

    Google Scholar 

  • Ochoa, J., andW. G. P. Mair: In preparation.

  • O'Sullivan, D. J., andM. Swallow: The fibre size and content of the radial and sural nerves. J. Neurol. Neurosurg. Psychiat.31, 464–470 (1968).

    Google Scholar 

  • Paintal, A. S.: A comparison of the nerve impulses of mammalian non-medullated nerve fibres with those of the smallest diameter medullated fibres. J. Physiol. (Lond.)193, 523–533 (1967).

    Google Scholar 

  • Peters, A., andA. R. Muir: The relationship between axons and Schwann cells during development of peripheral nerves in the rat. Quart. J. exp. Physiol.44, 117–130 (1959).

    Google Scholar 

  • Ranson, S. W.: Non-medullated nerve fibres in the spinal nerves. Amer. J. Anat.12, 67–87 (1911).

    Google Scholar 

  • —: Unmyelinated nerve fibres as conductors of protopathic sensation. Brain38, 381–389 (1915).

    Google Scholar 

  • —, andHelen, K. Davenport: Sensory unmyelinated fibres in the spinal nerves. Amer. J. Anat.48, 331–353 (1931).

    Google Scholar 

  • Ranson, S. W., W. H. Droegenmueller, H. K. Davenport, andC. Fisher: Number, size and myelination of the sensory fibres in the cerebrospinal nerves. In Sensation, its mechanisms and disturbances. Ass. Res. nerv. Dis. Proc.15, 3–34 (1935).

  • Remak: Obervationes anatomicae et microscopicae de systematis nervosi structura. Berlin 1838. Quoted byI. L. Tuckett.

  • Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol.17, 208–212 (1963).

    Google Scholar 

  • Sunderland, S., J. O. Lovarack, andL. J. Ray: The caliber of nerve fibres in human cutaneous nerves. J. comp. Neurol.91, 87–101 (1949).

    Google Scholar 

  • Thomas, P. K.: The connective tissue of peripheral nerve: an electron microscope study. J. Anat. (Lond.)97, 35–44 (1963).

    Google Scholar 

  • Thomas, P. K.: Personal communication.

  • —, andJean Slatford: Lamellar bodies in the cytoplasm of Schwann cells. J. Anat. (Lond.)98, 691 (1964).

    Google Scholar 

  • Trump, B. F., E. A. Smuckler, andE. P. Bendit: A method for staining epoxy sections for light microscopy. J. Ultrastruct. Res.5, 343–348 (1961).

    Google Scholar 

  • Tuckett, I. L.: On the structure and degeneration of non-medullated nerve fibres. J. Physiol. (Lond.)19, 267–311 (1896).

    Google Scholar 

  • Vizoso, A. D.: The relationship between internodal length and growth in human nerves. J. Anat. (Lond.)84, 342–353 (1950).

    Google Scholar 

  • Weller, R. O.: An electron microscopic study of hypertrophic neuropathy of Dejerine and Sottas. J. Neurol. Neurosurg. Psychiat.30, 111–125 (1967).

    Google Scholar 

  • Williams, P. L., andD. N. Landon: Paranodal apparatus of peripheral myelinated nerve fibres of mammals. Nature (Lond.)198, 670–673 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Read to the Queen Square Research Society, November 6th, 1967.

British Council Scholar on leave of absence from Escuela de Medicina, Universidad Austral, Valdivia, Chile.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ochoa, J., Mair, W.G.P. The normal sural nerve in man. Acta Neuropathol 13, 197–216 (1969). https://doi.org/10.1007/BF00690642

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00690642

Key-Words

Navigation